Welcome to your CDP Water Security Questionnaire 2021

W0. Introduction

W0.1

(W0.1) Give a general description of and introduction to your organization.

Ecolab (NYSE: ECL) is the global leader in water, hygiene and energy technologies and services. Around the world, businesses in food service, food processing, hospitality, healthcare, industrial, and oil and gas markets choose Ecolab products and services to keep their environment clean and safe, operate efficiently and achieve sustainability goals. Founded in 1923 and headquartered in St. Paul, Minn., Ecolab’s global workforce of 44,000 associates help make the world cleaner, safer and healthier by delivering comprehensive solutions and on-site service to promote safe food, maintain clean environments, optimize water and energy use, and improve operational efficiencies for customers at nearly three million locations in more than 170 countries. Ecolab’s ultimate competitive advantage is found in our industry-leading sales-and-service force. Every customer challenge is unique, which is why our 24,000 field associates partner with customers in their facilities, providing on-the-ground consultation and service. Our experts employ a rigorous process to gather data, apply advanced technology, rethink processes and provide solutions to address our customers’ unique economic, social and environmental challenges. Behind every field representative is a team of researchers, scientists, engineers, regulatory specialists and other experts working diligently to tackle customer challenges, develop new solutions and meet emerging needs. For over 95 years, Ecolab has been developing solutions to help sustain a healthy world for future generations. Our Total Impact approach evaluates the full impact of each product or service we provide to help customers increase efficiency, minimize use of natural resources and reduce waste—from sourcing and manufacturing to use and disposal. In 1928, we patented our first dispenser to provide the optimal amount of chemicals and reduce waste. In 1948, we introduced the first rinse additive, reducing energy needed to dry dishes by speeding up the drying process. In 1978, we eliminated ozone-depleting substances from our cleaning products, 11 years before the Montreal Protocol went into effect. In 2020, we delivered increased sales growth while also maintaining our combined investments in R&D, systems and field technology. Always striving to do better, we are setting bolder environmental performance goals that align with our business growth strategy as we continue to decouple resource use from growth. We aim to achieve a positive water impact by restoring greater than 50% of water withdrawal and achieving Alliance for Water Stewardship Standard (AWS) certification in high-risk watersheds by 2030. We also aim to reduce water withdrawal by 40% per unit of
production across our business in the same time frame. Further, we have set a customer impact goal, aiming to conserve 300 billion gallons of water annually by 2030 by reducing water consumption within our own and our customers’ operations. This represents water conservation equaling the annual drinking needs of more than 1 billion people. Our innovative products and services touch virtually every aspect of daily life. From the raw materials that are the building blocks of nearly every products, to production and manufacturing, to retail and service environments, Ecolab is behind the scenes working with many of the world’s most recognizable brands to improve performance, meet increasing demand, and reduce environmental impact. Further information about Ecolab is available at www.ecolab.com. The answers to the questions of the CDP prepared by Ecolab contain various forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. These include statements concerning future events, future financial performance, plans, strategies, expectations, prospects, impact of climate change, laws and regulations, and supply and demand. These statements, which represent Ecolab’s expectations or beliefs concerning various future events, are based on current expectations that involve a number of risks and uncertainties that could cause actual results to differ materially from those of such forward-looking statements. We caution that undue reliance should not be placed on such forward-looking statements, which speak only as of the date made. Ecolab does not undertake, and expressly disclaims, any duty to update any forward-looking statement whether as a result of new information, future events or changes in expectations, except as required by law.

W0.2

(W0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>January 1, 2020</td>
<td>December 31, 2020</td>
</tr>
</tbody>
</table>

W0.3

(W0.3) Select the countries/areas for which you will be supplying data.

- Algeria
- Argentina
- Australia
- Austria
- Belgium
- Brazil
- Bulgaria
- Canada
- Chile
- China
- China, Hong Kong Special Administrative Region
- Colombia
- Costa Rica
- Croatia
- Czechia
Denmark
Dominican Republic
Ecuador
Egypt
Equatorial Guinea
Finland
France
Germany
Greece
Hungary
India
Indonesia
Ireland
Israel
Italy
Japan
Jordan
Kazakhstan
Kenya
Malaysia
Malta
Mexico
Morocco
Netherlands
New Zealand
Norway
Pakistan
Peru
Philippines
Poland
Portugal
Puerto Rico
Qatar
Republic of Korea
Romania
Russian Federation
Saudi Arabia
Serbia
Singapore
Slovakia
Slovenia
South Africa
Spain
Sweden
Switzerland
Taiwan, Greater China
Thailand
Turkey
Uganda
Ukraine
United Arab Emirates
United Kingdom of Great Britain and Northern Ireland
United Republic of Tanzania
United States of America
Uruguay
Venezuela (Bolivarian Republic of)
Viet Nam

W0.4

(W0.4) Select the currency used for all financial information disclosed throughout your response.

USD

W0.5

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.

Companies, entities or groups over which operational control is exercised

W0.6

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?

No

W1. Current state

W1.1

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th>Sufficient amounts of good quality freshwater available for use</th>
<th>Direct use importance rating</th>
<th>Indirect use importance rating</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vital</td>
<td>Vital</td>
<td>Although our direct operations are not water intensive, having sufficient amounts of good quality freshwater is vital to our operations, products and services. Our direct operations withdraw from surface water, groundwater, and municipal water resources, and a portion of our facilities source water from water-stressed areas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Our primary use of freshwater is for washout procedures, and we</td>
<td>Therefore, the sustainable management of water resources is</td>
<td></td>
<td></td>
</tr>
<tr>
<td>also use freshwater to make the raw materials that go into our</td>
<td>fundamental to the success of our business.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>products. Therefore, the sustainable management of water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>resources is fundamental to the success of our business.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In terms of indirect operations, we also depend on the use of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>water to deliver our primary products and services to customers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>as water is the essential delivery mechanism to enable the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>outcomes our customers expect from us: cleaning, sanitation,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>heating and cooling. For example, our cleaning and sanitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solutions, water additives, water treatment systems, and many</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>other technologies rely upon freshwater and many of our</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>customers’ operations are sensitive to water quality, quantity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and availability.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>We expect that our direct and indirect freshwater use and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dependency will not change, remaining vital into the future as</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>we, nor our customers do not expect to change the way we or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>they use water when making our products or delivering our</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>services with customers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sufficient amounts of recycled, brackish and/or produced water</td>
<td>Important</td>
<td></td>
<td></td>
</tr>
<tr>
<td>available for use</td>
<td>Important</td>
<td></td>
<td></td>
</tr>
<tr>
<td>We don’t use brackish or produced water in our direct/ indirect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>operations and don’t expect to in the future.</td>
<td>Important</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of recycled water is important to our direct and indirect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>operations. We use recycled water where appropriate and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>available and measure and report for 100% of the sites over</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>which we have operational control. We do not require recycled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>water as a direct input, so have selected this aspect as ‘</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>important’ for our operations. While water use is essential to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>our business, our direct operations are not water intensive and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>our water risk assessments have not identified risks with the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>potential to have a substantive financial/ strategic impact.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therefore, we do not currently use a substantial amount of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>recycled water in our direct operations. However, we do recycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reuse water directly in some operations, such as cooling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>towers, and pursue projects that increase our use of reused/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>recycled water over the short-term. In</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2020 our two largest water-using plants in Clearing, Illinois and Garyville, Louisiana installed seal pots throughout to recirculate water and improve plant safety, saving nearly 9 million gallons of water annually. We continue to assess the potential for large water recycling projects at facilities that are high users of water and/or are located in water stressed regions.

We understand that our value chain’s use of recycled water is important to their operations, as it is used to supplement freshwater withdrawals for cleaning and other uses related to sanitation, heating and cooling. We manage more than 1 trillion gallons of water for our customers, and our expertise and solutions help significantly reduce, reuse and recycle water.

We expect that our direct and indirect recycled water use dependency may shift to vital in the future as climate change impacts the quality/availability of freshwater and we will work on increasing water circularity as freshwater becomes a limited resource. We expect our customers to also experience this shift.

W1.2

(W1.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water withdrawals – total volumes</td>
<td>Total volume of water withdrawal is measured and reported for 100% of our sites over which operational control is exercised. This includes water withdrawal volume collected on a monthly basis using our internal database tools and utility provider data management solutions for manufacturing facilities and headquarters/RD&E facilities. We prioritize measurement, accounting and reporting for these sites, which comprise over 90% of our impact. In some cases, we lack the ability to collect actual water withdrawal data. In these cases, we estimate water withdrawal data based on square footage intensities by site type.</td>
</tr>
<tr>
<td>Water withdrawals – volumes by source</td>
<td>76-99</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>We measure and monitor total volume of water withdrawal by source for all global manufacturing and headquarters/RD&E facilities. This includes water withdrawal volume by source collected on a monthly basis using our internal database tools and utility provider data management solutions. We prioritize measurement, accounting and reporting for these sites, which comprise over 90% of our impact. In some cases, we lack the ability to collect actual water withdrawal data. In these cases, we estimate water withdrawal data based on square footage intensities by site type. We do not currently track withdrawal volume by source for our Office, Distribution & Warehouse facilities. These facilities are not significant users of water, making up less than 10 percent of our total water withdrawal footprint based on estimated and actual sources.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water withdrawals quality</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water withdrawal quality data is measured and monitored for 100% of the sites over which operational control is exercised. This includes water withdrawal quality data collected on a monthly basis using our internal database tools and sourced by utility provider data management solutions for manufacturing facilities and headquarters/RD&E facilities. We prioritize measurement, accounting and reporting for these sites, which comprise over 90% of our impact. In some cases, we lack the ability to collect actual water withdrawal quality data. In these cases, we estimate water withdrawal quality data based on similar site types.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water discharges – total volumes</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>We measure and monitor total volume of water discharge for 100% of sites over which operational control is exercised. This includes water discharge volume data collected on a monthly basis using our internal database tools and utility provider data management solutions for manufacturing facilities and headquarters/RD&E facilities. We prioritize measurement, accounting and reporting for these sites, which comprise over 90% of our impact. In some cases, we lack the ability to collect actual water discharge data. In these cases, we estimate water discharge data by assuming withdrawal = discharge.</td>
<td></td>
</tr>
<tr>
<td>Water discharges – volumes by destination</td>
<td>76-99</td>
</tr>
<tr>
<td>Water discharges – volumes by treatment method</td>
<td>76-99</td>
</tr>
<tr>
<td>Water discharge quality – by standard effluent parameters</td>
<td>76-99</td>
</tr>
</tbody>
</table>
Together, we measure water discharge quality by standard effluent parameters at more than 76% of our global sites.

<table>
<thead>
<tr>
<th>Water discharge quality – temperature</th>
<th>Not relevant</th>
<th>We do not monitor water discharge quality by temperature and do not expect to in the future as Ecolab facilities do not produce a material amount of thermal effluent and do not expect this water aspect to be relevant in the future.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water consumption – total volume</td>
<td>100%</td>
<td>We measure water consumption at 100% of Ecolab sites. Consumption is calculated as the difference between total (actual and estimated) water withdrawals and total (actual and estimated) water discharges. Most of our water consumption results from the incorporation of water into products, or water lost to the atmosphere through evaporation. Water withdrawal and discharge are tracked monthly at our global manufacturing and headquarters/RD&E facilities using our internal database tools and utility provider data management solutions, with the resulting difference calculated as actual water consumption. We prioritize measurement, accounting and reporting for these sites, which comprise >90% of our impact. In some cases, we lack the ability to collect actual withdrawal, discharge and consumption data, including at some Office, Distribution & Warehouse facilities, where water consumption is expected to be immaterial. In these cases we estimate consumption by assuming withdrawal = discharge.</td>
</tr>
<tr>
<td>Water recycled/reused</td>
<td>100%</td>
<td>Water recycled and reused is measured and reported for 100% of the sites over which operational control is exercised. This includes data on water recycling and reuse that is collected on a monthly basis using our internal database tools and utility provider data management solutions for manufacturing facilities and headquarters/ RD&E facilities. We prioritize measurement, accounting and reporting for sites where we currently recycle and reuse water. In some cases, we lack the ability to collect actual water recycle/reuse data. In these cases, we do not include an estimate; we only</td>
</tr>
</tbody>
</table>
report known instances of water recycling and reuse. In 2020 our volume of water recycled/reused equaled 4.7% of total withdrawal, a 57% increase over 2019.

The provision of fully-functioning, safely managed WASH services to all workers

100%

Ecolab is committed to upholding the principles of water stewardship within 100% of our own operations, in alignment with the Alliance for Water Stewardship Standard: upholding good water governance, achieving a sustainable water balance, maintaining good water quality status, protecting or restoring important water-related areas, and providing safe water, sanitation, and hygiene (WASH) for all. We recognize the human right to water. We are committed to aligning with UN Sustainable Development Goal (SDG) #6 to “Ensure availability and sustainable management of water and sanitation for all” and have endorsed the UN Global Compact’s CEO Water Mandate. As stated in Ecolab’s Water Stewardship Position, we are committed to providing access to WASH facilities in 100% of our operations, and working to improve access to WASH facilities in local communities. We monitor the provision of fully-functioning, safety managed WASH services on an annual basis using our internal database tools.

W1.2b

(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, and how do these volumes compare to the previous reporting year?

<table>
<thead>
<tr>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawals</td>
<td>6,558</td>
<td>Lower</td>
</tr>
</tbody>
</table>

Ecolab’s total water withdrawals decreased by 12.1% from 7,457 megaliters in 2019 to 6,558 megaliters in 2020. We consider this to be ‘Lower’ as it is more than a 10% decrease and less than a 20% decrease from the previous year. This decrease was expected given our continued efforts to improve water efficiency and expand the use of recycled water within our own operations as we track progress towards our 2020 and 2030 water intensity targets. For
example, in 2020 our two largest water-using plants installed seal pots to recirculate water, saving nearly 9 million gallons (34,000 cubic meters) of water annually. Additionally, the decrease may be partially attributed to a decrease in business output driven by COVID-19 impacts (global sales decreased 6.1% from 2019 to 2020). Ecolab is committed to reducing its total water withdrawals and has set a target to reduce water impact by 40% per unit of production across the enterprise by 2030 from a 2018 baseline. Accordingly, we expect water withdrawal volumes to be lower in the future.

<table>
<thead>
<tr>
<th>Total discharges</th>
<th>4,996</th>
<th>About the same</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecolab’s total water discharges decreased by 9.5% from 5,522 megaliters in 2019 to 4,996 megaliters in 2020. We consider this to be ‘About the same’ as it is less than a 10% change from the previous year. This decrease was expected given our continued efforts to improve water efficiency and expand the use of recycled water within our own operations as we track progress towards our 2020 and 2030 water intensity targets. For example, in 2020 our two largest water-using plants installed seal pots to recirculate water, saving nearly 9 million gallons (34,000 cubic meters) of water annually. Additionally, the decrease may be partially attributed to a decrease in business output driven by COVID-19 impacts (global sales decreased 6.1% from 2019 to 2020). Ecolab is committed to reducing its total water withdrawals, which in turn will reduce total water discharges, and has set a target to reduce water impact by 40% per unit of production across the enterprise by 2030 from a 2018 baseline. Accordingly, we expect water discharge volumes to be lower in the future.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total consumption</th>
<th>1,562</th>
<th>Lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>We measure and monitor water consumption, defined by Ceres as the “water used but not returned to its original source, including water that has evaporated, transpired, incorporated into products, crops or waste, consumed by man or livestock or otherwise removed from local source” at 100% of our sites. Consumption is calculated as the difference between total (actual and estimated) water withdrawals and total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(actual and estimated) water discharges. Most water consumption is from the use of water in products, or water lost through evaporation. Water withdrawal & discharge is tracked monthly at our global manufacturing and headquarters/RD&E facilities using internal database tools and utility provider data management solutions, with resulting difference calculated as actual water consumption. We prioritize measurement, accounting and reporting for these sites, which comprise >90% of our impact. In some cases we lack the ability to collect actual withdrawal, discharge & consumption data, including at some Office, Distribution & Warehouse facilities, where water consumption is likely immaterial. In these cases we estimate consumption by assuming withdrawal = discharge.

Using this approach, Ecolab’s total water consumption decreased from 1,936 ML in 2019 to 1,562 ML in 2020. We consider this to be ‘Lower’ as it is > 10% decrease and < 20% decrease from previous year. This decrease was expected given our continued efforts to improve water efficiency and expand the use of recycled water within our own operations as we progress towards our 2020 and 2030 water intensity targets. The decrease may also be partially attributed to a decrease in business output driven by COVID-19 impacts. Ecolab is committed to reducing its total water withdrawals, which in turn will reduce total consumption, and has set a target to reduce water impact by 40% per unit of production across the enterprise by 2030 from a 2018 baseline. We expect water consumption volumes to be lower in the future.

W1.2d

(W1.2d) Indicate whether water is withdrawn from areas with water stress and provide the proportion.

<table>
<thead>
<tr>
<th>Withdrawals are from</th>
<th>% withdrawn from areas</th>
<th>Comparison with previous tool</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
</table>

12
Ecolab conducts an annual water risk assessment to identify facilities that may operate within water stressed regions, both in the near- and long-term. The analysis is based on combining our operational water withdrawal, effluent footprint and production metrics with water risk inputs and financial cost valuations from the Smart Water Navigator to inform decisions at an operational level. Both tools are used based on their ability to evaluate current and future climate-related water risks against multiple climate scenarios (e.g. IPCC RCP 8.5). In 2020, our water risk assessment scope included 100% of our direct operations. We assessed all company locations (including plants, offices, distribution, warehouses, research and development and related facilities), representing 100% of our global withdrawal and effluent footprint. Defining water stressed as areas having high (40-80%) or extremely high (>80%) baseline water stress according to Aqueduct, we determined that 18% of our total withdrawal is from water stressed areas, an increase from 17% in 2019. We consider this increase to be “About the same” as it is less than a 10% change from the previous year.

To further evaluate our water risk, we also evaluated sites in...
Based on these criteria, only two sites representing 5% of total production volume and 2% of total water withdrawal have been identified as operating in river basins where production may be affected by water risk. Both sites are working hard to mitigate this risk and are in scope of our 2030 Impact Goal to restore greater than 50% of water withdrawal and obtain AWS certification within high-risk watersheds. One of the sites, our City of Industry plant in California, obtained AWS certification in 2017.

W1.2h

(W1.2h) Provide total water withdrawal data by source.

<table>
<thead>
<tr>
<th>Source Description</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater,</td>
<td>Relevant</td>
<td>520</td>
<td>Lower</td>
<td>Fresh surface water, including rainwater, withdrawal is relevant because its a source</td>
</tr>
<tr>
<td>Source</td>
<td>Withdrawal Percentage</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>water from wetlands, rivers, and lakes</td>
<td>7.9%</td>
<td>We rely on for daily operations & manufacturing. It represents 7.9% of total withdrawal by source in 2020. Where municipal water is unavailable, we use fresh surface water. Fresh surface water, including rainwater, withdrawals decreased 14.7% from 2019-2020, which we interpret as ‘Lower’ as it represents a decrease of >10% and <20% from previous year. This decrease is due to efforts to reduce withdrawal, overall variability in production, and a company-wide decrease in output driven by COVID-19 impacts. Our dependence on fresh surface water as a share of total withdrawal by source remained about the same from 2019-2020. Ecolab is committed to reducing total water withdrawals and has set a target to reduce water impact by 40% per unit of production across the enterprise by 2030 from a 2018 baseline. Accordingly, we expect water withdrawal from fresh surface water to be lower in the future.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>Not relevant</td>
<td>We do not source any of our water from brackish surface water/seawater in our direct or indirect operations due to our facility locations and our operational requirements to use freshwater. We do not anticipate that this source will become relevant to Ecolab in the future.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater – renewable</td>
<td>Relevant</td>
<td>843</td>
<td>About the same</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
<td>-----</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Renewable groundwater withdrawal is relevant because it is one source of water that we rely on for daily operations & manufacturing based on the watersheds in which we operate, it represented 12.9% of total withdrawal by source in 2020. Where municipal water is unavailable we use groundwater, such as at our Cisterna, Italy facility. Renewable groundwater withdrawals decreased by 8.2% from 2019-2020, which we interpret as ‘About the same’ as it is <10% change from previous year. This decrease is due to efforts to reduce withdrawal, as well as variability in production and a decrease in output driven by COVID-19. Our dependence on renewable groundwater as a share of total withdrawal by source remained about the same from 2019-2020. We’re committed to reducing total water withdrawal and have a target to reduce water impact 40% per unit of production across the enterprise by 2030 from 2018 baseline. We expect water withdrawal from renewable groundwater to be lower in the future.</td>
<td></td>
</tr>
<tr>
<td>Groundwater – non-renewable</td>
<td>Not relevant</td>
<td></td>
<td>We do not source any of our water from non-renewable groundwater sources. As per our Water Stewardship Position Statement, Ecolab is committed to the sustainable management of water resources and non-renewable water resources are not</td>
<td></td>
</tr>
<tr>
<td>Source Type</td>
<td>Relevance</td>
<td>Quantity</td>
<td>Impact</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Produced/Entrained water</td>
<td>Not relevant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third party sources</td>
<td>Relevant</td>
<td>5,195</td>
<td>Lower</td>
<td></td>
</tr>
</tbody>
</table>

We do not consider environmentally, socially or economically sustainable. We do not anticipate that this source will become relevant to Ecolab in the future.

We do not source any of our water from produced/entrained sources as we do not have operations that produce water as a result of the extraction, processing, or use of raw materials. We do not anticipate that this source will become relevant to Ecolab in the future.

Third party municipal water is relevant because it is the primary source that we rely on for our daily operations and manufacturing based on the watersheds in which we operate. It represented 79.2% of our total withdrawal by source in 2020. Municipal water withdrawals decreased by 12.4% in 2020, which we interpret as ‘Lower’ as it represents a decrease of >10% and <20% from the previous year. This decrease is primarily due to efforts to reduce withdrawal, as well as overall variability in production and a company-wide decrease in output driven by COVID-19 impacts. Our dependence on third party sources as a share of total withdrawal by source remained about the same from 2019 to 2020. Ecolab is committed to reducing its total water withdrawals and has set a target to reduce water impact by 40% per unit of
production across the enterprise by 2030 from a 2018 baseline. Accordingly, we expect water withdrawal from third party municipal water to be lower in the future.

W1.2i

W1.2i) Provide total water discharge data by destination.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Relevant</td>
<td>873</td>
<td>About the same</td>
</tr>
<tr>
<td>Source Type</td>
<td>Relevance</td>
<td>Details</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Not relevant</td>
<td>Due to our facility locations and our operational requirements to use freshwater, we do not source any of our water from brackish surface water/seawater, and therefore do not discharge water into brackish surface water/seawater so this source is not relevant. We do not anticipate that this destination will become relevant to Ecolab in the future.</td>
<td></td>
</tr>
<tr>
<td>Groundwater</td>
<td>Not relevant</td>
<td>Groundwater discharge, which Ecolab defines as deep well injection, is no longer relevant to Ecolab. Groundwater discharge was primarily associated with our Upstream Energy business. Ecolab completed the divestiture of its Upstream Energy business in 2020. With the completion of the divestiture, we do not anticipate that this destination will become relevant to Ecolab in the future.</td>
<td></td>
</tr>
<tr>
<td>Third-party destinations</td>
<td></td>
<td>Third party destinations, including municipal destinations, wastewater hauled off-site and industrial wastewater treatment plants are relevant because they are the primary destination we rely on for our operations & manufacturing based on watersheds and utility infrastructure. In 2020, third party destinations represent 82.5% of total discharge by destination. Third party discharge decreased 10.6% from 2019-2020, which we consider to be ‘Lower’ as it is a reduction of >10% and <20%. This decrease is due to efforts to reduce withdrawal which reduces discharges, as well as variability in production and a decrease in</td>
<td></td>
</tr>
</tbody>
</table>
output driven by COVID-19. Our dependence on third party destinations as a share of total discharge by destination remained about the same from 2019-2020. We are committed to reducing total water withdrawals which will reduce discharges, and have a target to reduce water impact 40% per unit of production by 2030 from a 2018 baseline.

W1.2j

(W1.2j) Within your direct operations, indicate the highest level(s) to which you treat your discharge.

<table>
<thead>
<tr>
<th>Relevance of treatment level to discharge</th>
<th>Volume (megaliters/year)</th>
<th>Comparison of treated volume with previous reporting year</th>
<th>% of your sites/facilities/operations this volume applies to</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary treatment</td>
<td>Not relevant</td>
<td></td>
<td></td>
<td>Ecolab does not conduct tertiary treatment of discharge within our direct operations.</td>
</tr>
<tr>
<td>Secondary treatment</td>
<td>Relevant</td>
<td>451.8</td>
<td>About the same</td>
<td>Ecolab employs secondary treatment as the highest level of treatment at one site of 941 sites within our direct operations.</td>
</tr>
<tr>
<td>Primary treatment only</td>
<td>Not relevant</td>
<td></td>
<td></td>
<td>Ecolab does not have operations where primary treatment is the highest level of treatment applied to discharge.</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Discharge to the natural environment without treatment</td>
<td>Relevant</td>
<td>420.9</td>
<td>About the same</td>
<td>Less than 1%</td>
</tr>
<tr>
<td>Discharge to a third party without treatment</td>
<td>Relevant</td>
<td>4,056.4</td>
<td>About the same</td>
<td>91-99</td>
</tr>
</tbody>
</table>
majority of our total water discharge, and the majority of these manufacturin
g sites adhere to wastewater permits per regulatory requirements.

| Other | Not relevant | Ecolab does not employ other treatment methods as the highest level of treatment. |

W1.4

(W1.4) Do you engage with your value chain on water-related issues?

Yes, our suppliers
Yes, our customers or other value chain partners

W1.4a

(W1.4a) What proportion of suppliers do you request to report on their water use, risks and/or management information and what proportion of your procurement spend does this represent?

Row 1

<table>
<thead>
<tr>
<th>% of suppliers by number % of total procurement spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-25</td>
</tr>
<tr>
<td>26-50</td>
</tr>
</tbody>
</table>

Rationale for this coverage
As part of our 1.5C science-based target, Ecolab has committed that 70% of its suppliers by emissions covering purchased goods and service, capital goods, upstream transportation and distribution, business travel, and downstream transportation and distribution will set science-based targets by 2024. In support of this target, in 2020
Ecolab launched an engagement program with our top 50 suppliers by emissions. In addition to educating suppliers on GHG inventories and science-based target setting and collecting climate information, this engagement program collects water-related information from suppliers. Water-related information collected includes suppliers’ tracking of operational withdrawal, if the company has a withdrawal reduction target or intends to set a target, and key manufacturing locations. We use this information to evaluate the water risk management maturity of our key suppliers, and to identify opportunities for Ecolab to help our suppliers increase their efficiency and reduce impacts in their processes via our products and services. Ecolab understands that climate and water are intrinsically linked (it requires energy to pump, heat, cool and treat water). By helping our top suppliers by emissions reduce their water consumption, we can also help them manage their emissions, thus reducing our S3 emissions and supporting progress towards our SBT.

The rationale for coverage is our top 50 suppliers by emissions, representing 29% of procurement spend, as these suppliers represent the greatest opportunity to make progress towards our SBT. While the engagement coverage is focused on our SBT, these top suppliers by emissions include many of our largest raw material suppliers, for whom water risk management is most critical to our own supply chain. In 2021 we are expanding engagement to our next 50 largest suppliers by emissions. These suppliers are incentivized to participate in reporting because they represent our key business partners and we offer resources, products and services to help them increase efficiency and reduce both their water and emissions impact. Many of our suppliers are also our customers creating additional incentives to report and collaborate.

Impact of the engagement and measures of success

Impacts of our engagement result in the generation of new product launches which enables sales growth where more than 10% of our R&D pipeline is sourced from these initiatives. We collect product performance KPIs covering energy, water, emissions, as well as supplier operational impacts. This data is used by product R&D teams to inform efficiency projects with suppliers at the product development level and/or manufacturing level. Success is measured by: the number of projects per year, and the cumulative savings of energy and water projects delivered from a base case, that we co-deliver. Because our Strategic Suppliers are also key customers, customer account managers use this data to report savings from energy, water, waste impacts in their operations. For example, Ecolab engaged with key suppliers Dow and BASF to deploy its 3D TRASAR technology for cooling water which reduced the water footprint for our purchased goods from these two suppliers by 3 billion gallons, a 71% reduction.

Comment

Measures of success include: 1) # of suppliers developing water risk management maturity resulting from our engagement (e.g. # of suppliers with water reduction goals) 2) # of suppliers joining the Water Resilience Coalition. WRC is an industry-led movement to combat global water crisis through ambitious, quantifiable commitments & collective action. We provide suppliers guidance for joining. 3) the # of projects/ year & cumulative savings of energy & water projects delivered to top suppliers.
W1.4b

(W1.4b) Provide details of any other water-related supplier engagement activity.

<table>
<thead>
<tr>
<th>Type of engagement</th>
<th>Innovation & collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details of engagement</td>
<td>Encourage/incentivize innovation to reduce water impacts in products and services</td>
</tr>
<tr>
<td>% of suppliers by number</td>
<td>1-25</td>
</tr>
<tr>
<td>% of total procurement spend</td>
<td>1-25</td>
</tr>
</tbody>
</table>

Rationale for the coverage of your engagement

Raw materials, Equipment & Packaging suppliers are engaged on water-related issues including their risks, consumption and product development related information because these suppliers represent our systems engineering approach to providing unique chemistry solutions and services to our customers. They are selected for reporting through our procurement organization and are incentivized to participate in reporting because we co-innovate with them on projects, products, and services which reduce their operating costs and lower their environmental footprint. This is realized through our direct engagement process where we identify raw material purchasing needs and explore their manufacturing processes to identify opportunities to increase efficiency and reduce impacts in their processes. Many of these suppliers are also our customers creating additional incentives to collaborate.

Impact of the engagement and measures of success

Impacts of our engagement result in the generation of new product launches which enables sales growth where more than 10% of our R&D pipeline is sourced from these initiatives. We collect product performance KPIs covering energy, water, emissions, as well as supplier operational impacts. This data is used by product R&D teams to inform efficiency projects with suppliers at the product development level and/or manufacturing level. Success is measured by: the number of projects per year, the cumulative savings of energy and water projects delivered from a base case, that we co-deliver. For example, we engaged with Dow, a key raw materials supplier, to identify solutions to reduce water consumption at a facility in Spain facing water stress. Through our co-innovation process, we evaluated their operational data through our supplier program and deployed solutions that enable Dow to now use 40% reclaimed water, reducing freshwater withdrawal by 22% and effluent discharge by 49%. In 2020 we launched our new product Trimeta pHreedom™ as a result of Strategic Supplier Initiative engagement, which includes four top tier suppliers representing over 17% of raw materials spend. Customer benefits of the solution include more efficient cleaning, improved processing capabilities, water savings through reduced rinsing, and a significant reduction in chemical use. Ecolab partnered with BASF on this effort.
Comment

W1.4c

(W1.4c) What is your organization’s rationale and strategy for prioritizing engagements with customers or other partners in its value chain?

Customers: Our engagement strategy is realized through our eROI platform which asks customers to quantify: Improved Performance, Operational Efficiency, Sustainable Impact. The outcome is a value that aligns with customers’ KPIs. Our rationale for engagement is that customers drive our success and our ability to deliver improved performance is a competitive advantage. Sales growth by sector and by eROI product platform/technology are success measures. Our 2030 water impact goal is to help customers save 300 billion gallons of water/year.

NGOs: Through NGO partnerships we further our understanding of global trends impacting business, customers, and communities around the world. We are signatories of the CEO Water Mandate and members of the Corporate Eco Forum. Partnerships with The Nature Conservancy, Project WET Foundation, Water.org, World Resources Institute and California Water Action Collaborative advance stewardship initiatives in priority regions. Ecolab is a founding partner of the Alliance for Water Stewardship’s International Water Stewardship Standard, a framework to inform decisions and encourage collective action for sustainable freshwater use. We've implemented the framework at 4 facilities and worked with others to implement the Standard and identify collaborative opportunities. The rationale is to drive water stewardship through a stakeholder-inclusive process that involves site/catchment-based actions in priority watersheds. Success is measured by the # (and rate of change) of facilities certified to AWS standard, and # of AWS certified sites globally. By 2030, we plan to restore >50% of water withdrawal and achieve Alliance for Water Stewardship Standard certification in high-risk watersheds where we operate. In 2020 we announced our Water.org partnership to enable access to drinking water and improved sanitation for 100,000 people while contributing more than 26 million gallons of water/year to watershed health in high-stress river basins.

W2. Business impacts

W2.1

(W2.1) Has your organization experienced any detrimental water-related impacts?

No

W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

Yes, fines, enforcement orders or other penalties but none that are considered as significant
W2.2a

(W2.2a) Provide the total number and financial value of all water-related fines.

Row 1

<table>
<thead>
<tr>
<th>Total number of fines</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total value of fines</td>
<td>18,000</td>
</tr>
<tr>
<td>% of total facilities/operations associated</td>
<td>0.1</td>
</tr>
<tr>
<td>Number of fines compared to previous reporting year</td>
<td>Higher</td>
</tr>
</tbody>
</table>

Comment
We had one fine for water-related regulatory violations in 2020.

W3. Procedures

W3.3

(W3.3) Does your organization undertake a water-related risk assessment?
Yes, water-related risks are assessed

W3.3a

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.

Direct operations

<table>
<thead>
<tr>
<th>Coverage</th>
<th>Full</th>
</tr>
</thead>
</table>

Risk assessment procedure
Water risks are assessed as part of other company-wide risk assessment system

Frequency of assessment
Annually

How far into the future are risks considered?
More than 6 years

Type of tools and methods used
Tools on the market
International methodologies
Other

Tools and methods used
- Ecolab Water Risk Monetizer
- WRI Aqueduct
- Alliance for Water Stewardship Standard
- External consultants

Comment
Annual analysis includes an assessment of 100% of Ecolab’s direct operations to determine which sites are located in water-stressed areas and evaluate potential risk based on location, water withdrawal, production volume, and other key financial factors identified by the Ecolab Smart Water Navigator tool. In addition, as a founding partner of the Alliance for Water Stewardship (AWS) Standard, we have pilot tested the AWS standard at several Ecolab facilities and four of our plants have achieved AWS certification, which involves understanding and mitigating water risk at the site level.

Supply chain

<table>
<thead>
<tr>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
</tr>
</tbody>
</table>

Risk assessment procedure
- Water risks are assessed in an environmental risk assessment

Frequency of assessment
- Annually

How far into the future are risks considered?
- More than 6 years

Type of tools and methods used
- Tools on the market
- Other

Tools and methods used
- Ecolab Water Risk Monetizer
- WRI Aqueduct
- Other, please specify
 - Internal company methods

Comment
Ecolab uses the WRI Aqueduct tool, Smart Water Navigator tool (formerly the Ecolab Water Risk Monetizer), and other internal company methods to directly engage with our suppliers, evaluate water-related risks in their operations, and identify any opportunities to deploy our products and services to reduce their risks and impacts.

Other stages of the value chain

<table>
<thead>
<tr>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial</td>
</tr>
</tbody>
</table>
Risk assessment procedure
Water risks are assessed in an environmental risk assessment

Frequency of assessment
More than once a year

How far into the future are risks considered?
More than 6 years

Type of tools and methods used
Tools on the market
Other

Tools and methods used
Ecolab Water Risk Monetizer
WRI Aqueduct
Other, please specify
Internal company methods

Comment
Ecolab uses the WRI Aqueduct tool, Smart Water Navigator (formerly the Water Risk Monetizer tool), and other internal company methods to directly engage with our customers, assess water-related risks in their operations, and identify opportunities to deploy our products and services to reduce their risks and impacts.

W3.3b
(W3.3b) Which of the following contextual issues are considered in your organization's water-related risk assessments?

<table>
<thead>
<tr>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water availability at a basin/catchment level</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Water quality at a basin/catchment level</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Stakeholder conflicts concerning water resources at a basin/catchment level</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Implications of water on your key commodities/raw materials</td>
<td>Relevant, always included</td>
</tr>
</tbody>
</table>
including reducing water consumption. We anticipate that implications of water on our raw materials will continue to be relevant for us in the future.

Water-related regulatory frameworks	Relevant, always included	Water-related regulatory frameworks are relevant and in some locations a regulatory requirement, as water is essential in our operations, and in the delivery of our products and services. Ecolab uses the Smart Water Navigator tool, which evaluates water regulatory frameworks and potential taxes and tariffs with additional inputs via the WRI Aqueduct tool to consider regulatory risks at the watershed level. This analysis is augmented with local, state, federal and/or national regulatory tracking through Ecolab's corporate regulatory affairs organization. Water issues are monitored at the local level in select regions where we have identified water risks. For example, water withdrawal restrictions issued by the State of California during the drought of 2018 have influenced our sites in the State and was a precursor to getting two California sites certified to the Alliance for Water Stewardship Standard. These types of current and pending legislation and related regulatory frameworks are incorporated into our final water risk ranking tool and analysis to determine if there is any substantive risk for an individual or grouping of facilities. We anticipate that water-related regulatory frameworks will continue to be relevant for us in the future.	
Status of ecosystems and habitats	Relevant, always included	The status of ecosystems & habitats is relevant as having operations in environmentally sensitive or protected areas may lead to regulatory, operational and/or reputational risks. This is managed through our global SH&E policies. We investigate our global sites to determine if any are near protected areas. We use the WRI Aqueduct and Smart Water Navigator tools to evaluate the status of ecosystems and habitats at the local level. Compliance with wastewater regulations associated with our operations limits our impact to local ecosystems. We anticipate that the status of ecosystems and habitats will continue to be relevant for us. We are not aware of any operations that affect species on the International Union for Conservation of Nature’s (IUCN) red-list or national conservation list. Ecolab owns one facility, in Garyville, Louisiana, that has protected wetlands on its property. The protected area comprises 220 acres. It is undeveloped and contains no buildings. This is the only known operational site that has owned or leased land that is in, or adjacent to, protected areas and areas of high biodiversity value outside of protected areas. In 2019 this site became certified to the AWS standard, and the 1st	
Access to fully-functioning, safely managed WASH services for all employees	Relevant, always included	North American site certified to version 2.0 of the standard. In partnership with The Nature Conservancy, the project focused on water balance, water quality and the plant’s relationship with the local ecosystem and stakeholders. To contribute to the health of this water-stressed watershed, the Garyville plant adopted a net positive water approach, increasing water-use efficiency on site using Ecolab solutions while addressing the shared water challenges in the basin through nature-based solutions. We are a sponsor of TNC’s Urban Water Blueprint which analyzes the state of water in >2,000 watersheds and 530 cities worldwide to provide science-based recommendations to improve water quality. A region-specific example is our partnership with TNC is in Loch Leven. Within the Mississippi River Delta, the Lower Mississippi Alluvial Valley faces the potential loss of 3 critical wetland habitats, which would impact the health of numerous species. In partnership with TNC, Ecolab supports the Loch Leven project, working to restore and enhance 10,000 wetland acres and provide 12.1 billion gallons of flood storage capacity to local communities. Ecolab’s contribution to this work allows for 100 million gallons of water replenishment in the Upper Mississippi River Basin.	Ecolab is committed to upholding the principles of water stewardship within our own operations, in alignment with the Alliance for Water Stewardship Standard, which includes providing safe water, sanitation, and hygiene (WASH) for all. Accordingly, we have set a company-wide goal to provide access to WASH facilities in 100% of our operations, and work to improve access to WASH facilities in local communities. We monitor the provision of fully-functioning, safety managed WASH services on an annual basis using our internal database tools. This goal is important to our company as it aligns with Ecolab’s efforts to advance sustainable water solutions around the world through partnerships with our customers, nongovernmental organizations, suppliers and other stakeholders to help ensure sustainable water management. WASH access is evaluated in a separate assessment tool and program managed by our Supply Chain organization, but is considered as a part of our wider enterprise-level water risk assessment. To assess progress, we monitor the percent of operations and sites with audited WASH facilities in place. We anticipate that access to fully-functioning, safely managed WASH services for all employees will continue to be relevant for us in the future.
(W3.3c) Which of the following stakeholders are considered in your organization’s water-related risk assessments?

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Relevance & Inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers</td>
<td>Relevant, always included</td>
<td>Our relationships with many of the world’s biggest brands give us a unique perspective on the risks and opportunities facing a wide range of industries all around the world. We learn from our customers — the challenges they face and the results they desire — and we use this knowledge to drive innovation and help them achieve their business and sustainability goals. Specific risks that we consider related to customers include reputation and brand management, tied to the performance and efficacy of our products and services to realize environmental savings in-use for our customers. Through our eROI value capture approach, we also engage directly with our customers to undertake water-related risks assessments of their operations using the Smart Water Navigator, which helps us to tailor specific solutions that address their water risks. We also engage directly with our customers every day and on-site through our 24,000 sales and service associates where we partner with customers to help them do more with less — while achieving their business goals. Our proprietary eROI value capture approach measures the economic, operational and environmental impact of our solutions. With performance outcomes uncompromised, we credibly deliver and document this exponential value to our customers. This is exemplified by our water stewardship goal to conserve 300 billion gallons of water annually by 2030 by reducing water consumption in our customers’ operations as well as our own.</td>
</tr>
<tr>
<td>Employees</td>
<td>Relevant, always included</td>
<td>We strive to make Ecolab a place where talented and capable people are inspired, motivated and fully engaged in their work. We include employees in our water-related risk assessments because our associates drive innovation, support business growth and provide personally delivered service and on-the-ground support to more than three million customer locations – they are critical to our business success. We engage employees through bi-annual surveys that monitor and evaluate employee engagement overall and on topics specific to sustainability including water issues, which are critical to our success and inform our business strategy. We challenge our employees to...</td>
</tr>
</tbody>
</table>

Other contextual issues, please specify | Not considered |
<table>
<thead>
<tr>
<th>Investors</th>
<th>Local communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevant, always included</td>
<td>Relevant, always included</td>
</tr>
</tbody>
</table>
| As a publicly traded company, we place a priority on the opinions of our shareholders. We engage in direct dialogue with our stakeholders each year at our annual shareholder meeting, and we also engage with the investor community via disclosures, surveys and rankings from investor-led indices. Specifically, we use data sets and criteria provided from investor-led organizations to inform our own water-related risk assessments and engage in dialogue with these groups to share results and shape our strategy. | We engage a diverse set of stakeholders including employees, customers, investors, relevant external groups and local communities to assess the materiality of sustainability issues. To improve water stewardship at owned operations and watersheds where we operate we consider the needs, expectations and concerns of local communities critical to conducting rigorous & comprehensive water risk assessments. Risks considered include reputation and brand management. We evaluate water-specific risks using Ecolab tools to inform stewardship activities. Solutions for Life, a philanthropic program launched in 2014 enhances our mission to conserve water and improve hygiene around the world. Through Solutions for Life, Ecolab supports the work of NGO partners, the Project WET Foundation and The Nature Conservancy, which engage with and benefit local communities. We can integrate identified risks and concerns from these stakeholders into our water-related risk assessments. Educators and Ecolab associates globally have downloaded Project WET (Water Education for Teachers) materials to share in their communities. This free curriculum has reached more than 8 million individuals in 98 countries with its lessons about water conservation and healthy hygiene practices. Ecolab sponsors Project WET’s Discoverwater.org, an interactive website that hosts free activities about the role of water in our lives. In 2020, the website had more than 250,000 unique users. The Monterrey Metropolitan Water Fund is an example of our community impact through our partnership with The Nature Conservancy. Launched in 2014, this collaboration has restored and conserved over 293 acres of land in the Cumbres de
| Other water users at a basin/catchment level | Relevant, always included | Monterrey National Park, which provides >60% of the Monterrey metropolitan area’s water. These activities are aimed at improving water infiltration, regulating water flow, reducing flood risk and strengthening water security and climate resilience for the region. Our collaboration has produced a community tree nursery that supplies trees for restoring the landscape and contributes to the livelihoods of local farmers. The plants produced to date have the potential to reforest between 296-370 acres of areas devoid of vegetation, protecting water resources. In 2020, we announced our partnership with Water.org to enable access to drinking water and improved sanitation for 100,000 people while contributing more than 26 million gallons of water/year to watershed health in high-stress river basins. |
| NGOs | Relevant, always included | Our ability to provide and protect clean water, safe food, abundant energy and healthy environments is strengthened through our partnerships with reputable global NGOs. Through these partnerships, we further our understanding of global trends impacting our business, customers and communities around the world, and use their insights to inform our water-related risk assessments. Annually, we actively engaged with relevant organizations through one-to-one meetings, hosting workshops and sponsoring conferences, and these partnerships influence our assessment of our company’s water-related risks and opportunities related to our operations and customer solutions. NGO partnerships include the Water Resilience Coalition (as part of the UN Global Compact CEO Water Mandate), Project WET Foundation, Water.org, Corporate Eco Forum, World Wildlife Fund, Alliance for Water Stewardship, The Nature Conservancy, World Resources Institute, and the California Water Collaborative, among others. Specific risks that we consider related to NGOs include reputation and brand management, tied to the performance and efficacy of our products and services to realize environmental savings in-use for our customers, and related to our performance in NGO-led surveys, rankings and disclosures. |

Since 2010, Ecolab has dedicated resources, expertise and application of principles to assist in developing and implementing the AWS Standard & to drive stewardship through...
a stakeholder-inclusive process that involves site/catchment-based actions. All certified Ecolab facilities work with other users in the watershed to drive collective action. For example, the California Water Action Collaborative allowed the City of Industry and Carson plants to share best practices and projects with other large companies. At our Garyville site, Ecolab is involved with the Louisiana Water Synergy Project (LWSP). The LWSP works with >20 companies in the Lower Mississippi River Basin to address a range of water supply, water quality, stormwater and coastal resiliency issues. In quarterly meetings, Ecolab shares our water stewardship strategy and journey and champions the AWS Standard.

Through our Solutions for Life initiative with The Nature Conservancy (TNC), we continued our partnership with The Nature Conservancy securing and restoring water sources globally. Ecolab has engaged with the Minnesota Headwaters Fund, established to protect clean water in Minnesota's lakes and rivers for the benefit of nature, people and business. The Fund supports protection and high-impact conservation work throughout the Upper Mississippi River basin, with a 10-year goal to protect 200,000 acres. Our funding has helped directly protect 759 acres and influenced the protection of 11,870 acres in the Upper Mississippi River watershed. Additionally, 123 acres and 7,750 feet of river were restored. Ecolab employees helped with restoration work on the Rum River in May 2019 with wetland plant and tree planting efforts. Water-specific risks considered related to other users of watershed basins include a broad set of water quality, quantity, and baseline/future water stress risks, as well as financial risks evaluated by our Smart Water Navigator tool. Results inform water stewardship programs and initiatives with other users such as with TNC and Minnesota Headwaters Fund.

<table>
<thead>
<tr>
<th>Regulators</th>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ecolab takes a holistic approach to sustainability, including economic, environmental, and social responsibility activities. Engaging with policymakers is one means of furthering our sustainability objectives. We communicate with policymakers in proactive policy discussions, bringing our market segment and scientific expertise to the table on energy, water, waste, food safety and customer health issues. We engage with federal and state legislative and regulatory bodies, industry and customer trade associations around the globe and non-government organizations that provide a forum for environmental policy discussion relevant to our industry. This includes a diverse set of stakeholders which focus on key climate mitigation and adaptation issues and potential risks such as product design for</td>
</tr>
<tr>
<td>Category</td>
<td>Relevance</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>River basin management authorities</td>
<td>Relevant, always included</td>
</tr>
<tr>
<td>Statutory special interest groups at a local level</td>
<td>Relevant, always included</td>
</tr>
</tbody>
</table>
health in extremely high-stress river basins in which Ecolab operates, including Chennai, Mumbai, Konnagar, Delhi, Baroda, Jamshedpur, Kolkata and Pune.

Suppliers

<table>
<thead>
<tr>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through our strategic supplier initiative, we actively engage with suppliers whose products and services we rely upon to develop our own products & services. As a part of this program, we undertake assessments for a subset of raw material strategic suppliers to assess and understand their potential water-related risks, including current water withdrawal quantity at-risk and in the future using a 2DS scenario, which could impact the development and manufacture of our own products and services.</td>
</tr>
</tbody>
</table>

Water utilities at a local level

<table>
<thead>
<tr>
<th>Relevant, always included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecolab develops specific water withdrawal and effluent management plans for each our manufacturing sites and applies our annual Water Risk Assessment to all sites. Water utilities and suppliers are engaged on an as needed basis in development of these programs, in particular where we have identified a potential future price increase in the cost of water through the Smart Water Navigator and/or where the site has an overall water risk score above the global average via the WRI Aqueduct tool.</td>
</tr>
</tbody>
</table>

Other stakeholder, please specify

<table>
<thead>
<tr>
<th>Not considered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

W3.3d

(W3.3d) Describe your organization's process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

We conduct an annual water risk assessment, aligned with our Annual Enterprise Risk Assessment, of our potential physical and transition risks to our operations and suppliers, in the near- and long-term. Data inputs include water withdrawal, effluent, and production metrics with water risk inputs and financial cost valuations from the Smart Water Navigator. We use this tool because it is publicly available, global, uses best-in class local water basin datasets (WRI Aqueduct, WWF, etc.), and scientific methodologies to monetize water-specific business risks. Time horizons are based on the RCP 8.5 scenarios built into the tools on a current year (various risk criteria), 2020, 2030 and 2040 basis (e.g. change in future water stress), where 2020 is the year for our near-term internal water target, and 2030 the year of our medium-term internal water target and customer impact water stewardship goal. This approach was selected so that we can demonstrate our own tools in assessing risk through scenario analysis on our own operations, supply chain and with customers. Coverage is 100 percent of our direct operations and suppliers. Our risk-response decision making process consider the results of this analysis and directly informs our business strategy to prioritize our water conservation and efficiency efforts across the business and with suppliers.
W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

No

W4.1a

(W4.1a) How does your organization define substantive financial or strategic impact on your business?

When assessing water risk in our direct manufacturing operations, we measure the impact on our total production volume (MT) to determine substantive impacts on the business. We define risks that have a ‘substantive financial or strategic impact’ as having a total (isolated or combined) >10% production capacity impact on Ecolab’s annual total production in our direct manufacturing operations. For example, if one or more sites experienced a prolonged shutdown due to a loss of operating capacity which could affect greater than 10% of our global production capacity for a product line with no alternative production means, this would be considered as substantive impact.

When assessing water risk in supply chain and more broadly across our corporate level Enterprise Risk Management (ERM) process, we define risks that have a ‘substantive financial or strategic impact’ as having an impact of greater than 5% of operating income, either as an isolated event or combination of factors that may impact our corporate strategy and business continuity. For example, if one or more of our suppliers experience a prolonged shutdown due to a loss of operating capacity and we were unable to source the same raw materials or the cost of which was equal to or greater than 5% of our operating income, this would be considered a substantive impact. This assessment and its criteria are reviewed annually and incorporated into our annual business risk assessment and reporting processes. Criteria that we consider in this assessment include, for example, the current baseline water stress as scored by the WRI Aqueduct tool and the future predicted change in baseline water stress using the business-as-usual IPCC RCP8.5 climate scenario to 2030.

W4.2b

(W4.2b) Why does your organization not consider itself exposed to water risks in its direct operations with the potential to have a substantive financial or strategic impact?

<table>
<thead>
<tr>
<th>Primary reason</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Risks exist, but no substantive impact anticipated</td>
</tr>
<tr>
<td>Ecolab conducts annual water risk assessments to identify facilities that may operate in water stressed regions, both near- and long-term. The analysis combines operational water withdrawal, effluent footprint & production metrics with water risk inputs & financial cost valuations from the Smart Water Navigator to inform operational decisions. The Smart</td>
<td></td>
</tr>
</tbody>
</table>
Water Navigator leverages publicly available quantitative water risk datasets developed by the World Resources Institute (WRI) & World Wildlife Fund. Additional financial analysis considers incoming and outgoing water quality & quantity to provide a Risk Premium relative to the price of water score for each site, which enables us to assess whether any site or combination of sites could expose the company to water risks (current and/or future) that may generate a substantive change to our business, operations, revenue or expenditure.

Our 2020 water risk assessment scope included 100% of direct operations. We assessed all company locations (including plants, offices, distribution, warehouses, research & development and related facilities), representing 100% of global withdrawal & effluent footprint. This list of facilities was assessed using a variety of risk criteria inputs provided by the WRI Aqueduct Water Risk Atlas & insights from Ecolab's Smart Water Navigator.

By GRI’s definition of water stress, 18% of Ecolab’s total water withdrawal is from areas with “high” or “extremely high” baseline water stress, as assessed using the WRI Aqueduct Water Risk Atlas. To further evaluate our water risk, we evaluated sites against the following criteria:

- Future baseline water stress expected to remain the same or increase
- Ten-year potential revenue at risk greater than 10% (using Smart Water Navigator tool)
- Production intensity (i.e. % of each sites’ production out of total production) greater than 1%

Using this criteria, in 2020 only 2 sites representing 5% of total production volume and 2% total water withdrawal were identified as operating in river basins where production may be impacted by water risk. No single, nor combination of sites exceed our production impact threshold of 10% so we believe we don't have inherent water risks with potential to have a substantive financial or strategic impact on business operations. Both sites are working to mitigate risk & are in scope of our 2030 Impact Goal to restore greater than 50% of water withdrawal & obtain AWS certification in high-risk watersheds.

W4.2c

(W4.2c) Why does your organization not consider itself exposed to water risks in its value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact?

<table>
<thead>
<tr>
<th>Primary reason</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Based on our assessment, our supply chain is not exposed to significant physical, regulatory or any other risks related to water that could have a substantive financial or strategic impact, i.e. impact >5% of operating</td>
</tr>
</tbody>
</table>
We purchase more than 10,000 raw materials, with the largest single raw material representing less than 3% of raw material purchases. Our raw materials, with the exception of a few specialized chemicals which we manufacture, are generally purchased on an annual contract basis and are ordinarily available in adequate quantities from a diverse group of suppliers globally. When practical, global sourcing is used so that purchasing or production locations can be shifted to control product costs at globally competitive levels.

Key commodities and raw material purchasing activities are included in the scope of both our company-wide Enterprise Risk Management process and our Strategic Supplier Initiative (SSI), where we engage our top tier (4 suppliers) representing 17% of our Raw Materials spend. To date, substantive water related risks have not been identified. The SSI and more broadly, our supply chain procurement organization, conducts reviews which include a formal process that identifies critical suppliers (e.g. high volume suppliers, suppliers of critical raw materials, or those with non-substitutable formulas). Risk management plans including changes in source of supply and potential alternative raw materials formulations are in place for those suppliers that have identified potential water-related risks. For example, where we have identified raw material sourcing risks for an individual supplier, we ensure that we have multiple suppliers that we can procure from in the event that any one supplier may be impacted by a market driven or supply chain-related disruption, which may include climate-related risks. However, none of these individually nor in total exceed our 5% operating income impact threshold for substantive supply chain risk.

W4.3

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?

Yes, we have identified opportunities, and some/all are being realized

W4.3a

(W4.3a) Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

<table>
<thead>
<tr>
<th>Type of opportunity</th>
<th>Products and services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary water-related opportunity</td>
<td>Increased sales of existing products/services</td>
</tr>
<tr>
<td>Company-specific description & strategy to realize opportunity</td>
<td></td>
</tr>
</tbody>
</table>
All industries that Ecolab serves rely on water for their operations making the delivery of water-efficient products and services strategic to our business success. As climate change impacts the availability and price of water and fossil-based energy, customers are increasingly looking for solutions that improve their operational efficiency and cost savings, including reducing water use and the energy required to pump, heat or cool water. In the European regulatory market alone, there is potential for increased market share and access of up to $4 billion of competitively-held water treatment applications.

By 2030, Ecolab aims to conserve 300 billion gallons of water per year by reducing consumption in its own operations and those of its customers. We invest in R&D activities to produce a portfolio of products that reduce customer water use, such as our APEX Warewashing System, Formula 1 laundry program, DryExx conveyor lubricant, and our 3D TRASARTM system for cooling tower and boiler feed water conditioning. By meeting customer demand for these solutions, we will realize significant revenue growth. For example, in the immediate aftermath of COVID-19, Wyndham partnered with Ecolab to implement solutions (such as our Aquanomic laundry program and Oasis Pro surface cleaner) to reduce the amount of resources and products needed to clean each property while still maintaining high standards for cleanliness. Ecolab’s clean, and resource-efficient solutions helped the Wyndham team save 160 million gallons (610,000 m3) of water. We use an eROI program to measure and communicate cost and environmental savings for customers which enhances our value proposition and drives sales.

Estimated timeframe for realization
Current - up to 1 year

Magnitude of potential financial impact
Medium-high

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)
4,000,000

Potential financial impact figure – maximum (currency)
88,000,000,000

Explanation of financial impact
Nearly every product or service we sell impacts our customers’ water efficiency, for example, all of our Nalco Water customers rely on water for their production processes. Developing and expanding our resource efficient products and services presents opportunities for increased growth rate, market share and profitability. We have identified many opportunities in our target markets, including food & beverage processing and commercial buildings, to gain a competitive advantage through our water and energy optimizing solutions. Specific to water-related regulatory opportunities,
there is the potential for increased market share and access of up to $4 billion of competitively-held water treatment applications in our European markets alone (this was estimated based on our existing market share in the European market for water treatment applications, against the total available market share). At a global level, Ecolab’s market growth opportunity represents approximately an $88 billion spread across all our primary business units (this was estimated based on our existing market share in food & beverage processing and commercial buildings, against the total available market share).

Type of opportunity
Products and services

Primary water-related opportunity
Other, please specify
Expansion into new markets

Company-specific description & strategy to realize opportunity
Climate change will cause increased risks to water availability and quality, which we anticipate will drive greater water use regulation globally. As Ecolab serves customers in many industries that rely on water to operate, there is an opportunity for us to develop new products and services and expand our existing portfolio of conservation, reuse, recycle, and zero liquid discharge technologies that improve water efficiency in a more tightly regulated market. We anticipate these opportunities will be global, but will be especially pronounced in densely populated, arid and temperate regions including BRIC and emerging markets.

Our goal to annually reduce 300 billion gallons of water withdrawal by 2030 in our customers and own operations strategically positions us to invest in two tools, the Water Risk Monetizer and the Smart Water Navigator, to help customers identify water risks, whether regulatory, quality or availability and to drive greater operational water efficiency. These tools allow us to enter into new markets with our customers by partnering with them to use these tools to inform their potential risks and to identify how our products and services can be used to mitigate those risks. For example, we used the Water Risk Monetizer to help a steel client in India – a very water intensive industry in a water-stressed region facing increased regulatory frameworks – identify and save 380 million gallons of water through smart water management, digital technologies like our 3D TRASAR Technology and operational management services.

Estimated timeframe for realization
1 to 3 years

Magnitude of potential financial impact
Medium

Are you able to provide a potential financial impact figure?
Yes, an estimated range
Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)
500,000,000

Potential financial impact figure – maximum (currency)
1,500,000,000

Explanation of financial impact
Our Global Industrial segment, of which water treatment applications is a large part, had $5.8B in sales in 2020. With growth estimates for the water treatment systems market size projected at 7%+ per year, and a potential market of $44B in 2025, we have an opportunity to expand our market share by growing from 8% to 10% per year. This would represent $.5B to $1.5B of potential additional sales compared to simply maintaining market share by growing at 7%. By innovating and maintaining market leadership, we have the opportunity to expand our share in a growing market.

W6. Governance

W6.1

(W6.1) Does your organization have a water policy?
Yes, we have a documented water policy that is publicly available

W6.1a

(W6.1a) Select the options that best describe the scope and content of your water policy.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Content</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-wide</td>
<td>Description of business dependency on water</td>
<td>Ecolab’s publicly available Water Stewardship Position formalizes our global commitment to undertake responsible water stewardship for our company and customers. Our Position is company-wide in scope, so we apply the principles of this policy to all our operations, as well as across our value chain. The aim of the Position is to hold Ecolab accountable to upholding principles of water stewardship and supporting global progress towards achieving SDG Goal #6: Ensure availability and sustainable management of water and sanitation for all. The Position is incorporated into our Office of Sustainability for application across our business, and includes the following content:</td>
</tr>
<tr>
<td>Row 1</td>
<td>Description of business impact on water</td>
<td>1) Description of business dependency and business impact on water;</td>
</tr>
<tr>
<td></td>
<td>Description of water-related performance standards for direct operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reference to international standards and widely-recognized water initiatives</td>
<td>2) Description of water-related performance standards,</td>
</tr>
<tr>
<td></td>
<td>Company water targets and goals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commitment to align with public policy</td>
<td></td>
</tr>
</tbody>
</table>
initiatives, such as the SDGs
Commitments beyond regulatory compliance
Commitment to water-related innovation
Commitment to stakeholder awareness and education
Commitment to water stewardship and/or collective action
Acknowledgement of the human right to water and sanitation
Recognition of environmental linkages, for example, due to climate change
international standards and widely-recognized water initiatives, including the Alliance for Water Stewardship Standard;
3) Description of company water targets and goals;
4) Commitment to align with public policy initiatives, including UN SDG Goal #6, and target #6.4 to “substantially increase water-use efficiency across all sectors”;
5) Commitments beyond regulatory compliance;
6) Commitments to water related innovation, including addressing water risks in innovation processes and partnering with customers to help them achieve their water goals;
7) Commitment to stakeholder awareness and education, including commitments to collaborate and engage with stakeholders to reduce risks and impacts and develop effective and sustainable solutions;
8) Commitment to water stewardship and/or collective action, including promoting stewardship of natural resources and environmental protection;
9) Acknowledgement of the human right to water and sanitation; and
10) Recognition of environmental linkages, including the importance of the food-energy-water nexus and climate change impacts on water availability and quality.

W6.2

(W6.2) Is there board level oversight of water-related issues within your organization? Yes

W6.2a

(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

<table>
<thead>
<tr>
<th>Position of individual</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board-level committee</td>
<td>While the full Board of Directors monitors the Company’s progress on sustainability, the Safety, Health and Environment (SHE) Committee of the Board has the highest level of direct responsibility for all sustainability matters, including water-related issues. Responsibility for water has been assigned to this Committee as it falls within the scope of safety, health and environmental matters that are part of the principle responsibilities and duties of the Committee. As stated in its Charter, the SHE Committee is responsible for reviewing and overseeing the Corporation’s SHE policies, programs and practices that affect, or</td>
</tr>
</tbody>
</table>
could affect, the Corporation’s employees, customers, stockholders, and neighboring communities. This Committee reports to the Board of Directors and provides updates to the Board on the company’s implementation of and progress against its sustainability goals, including water-related goals (for example, Ecolab’s goals to restore greater than 50% of our water withdrawal and achieve Alliance for Water Stewardship (AWS) Standard certification in high-risk watersheds, reduce water withdrawal by 40% per unit production across our enterprise, and to conserve 300 billion gallons of water annually by 2030 by reducing water consumption in our customers’ operations as well as our own). An example of a water-related decision made by the SHE committee is its 2020 decision to support enhanced effort on risk mitigation within our direct operations, approving our 2030 goal to restore greater than 50% of our water withdrawal and achieve Alliance for Water Stewardship (AWS) Standard certification in high-risk watersheds.

W6.2b

(W6.2b) Provide further details on the board’s oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency that water-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which water-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1: Scheduled - some meetings</td>
<td>Monitoring implementation and performance</td>
<td>Ecolab’s Corporate Sustainability Team monitors the risks and opportunities related to water, as well as the company’s overall sustainability performance by collaborating with our global SHE, supply chain, regulatory, and corporate risk departments. The Safety, Health and Environment (SHE) Committee of the Board of Directors receives regular updates on the implementation of and progress against sustainability and water-related goals and activities from the CSO/Vice President, Corporate Responsibility who chairs the Corporate Sustainability team. The Board of Directors then receives an annual presentation from the SHE Committee on the company’s progress against its sustainability goals, and implementation of projects and related activities, which includes management of potential climate-related issues including water, as appropriate. Accordingly, the SHE Committee discusses with the Board elements of each of the governance mechanisms selected, including guiding company strategy, approving performance objectives, guiding major plans of action and business plans, monitoring performance and progress towards Ecolab’s water-related targets,</td>
</tr>
</tbody>
</table>
W6.3

(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

<table>
<thead>
<tr>
<th>Name of the position(s) and/or committee(s)</th>
<th>Responsibility</th>
<th>Frequency of reporting to the board on water-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Sustainability Officer (CSO)</td>
<td>Both assessing and managing water-related risks and opportunities</td>
<td>Annually</td>
</tr>
</tbody>
</table>

Please explain:

Our CSO / VP, Corporate Responsibility leads Ecolab’s Corporate Sustainability program, which includes water-related issues. Their water-related responsibilities include: 1) executing global water strategy, 2) integrating water stewardship principles, 3) executing water value propositions across our commercial sectors, 4) collaborating with executive leadership on long-term plans, 5) corporate reporting and disclosure, and 6) stakeholder engagement. The CSO/ VP, Corporate Responsibility reports to the CEO and sits on the Sustainability Executive Advisory Team (SEAT) which is made up of 10 members of the company’s executive leadership team. The SEAT meets with the Corporate Sustainability Team on a quarterly basis. Outputs of these meetings are reported by the CSO/ VP, Corporate Responsibility to the SHE Committee of the Board, of which the CEO is a member, on an annual basis. Annual reports to the SHE Committee of the Board include progress against our water targets and goals.

W6.4

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

<table>
<thead>
<tr>
<th>Provide incentives for management of water-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

W6.4a

(W6.4a) What incentives are provided to C-suite employees or board members for the management of water-related issues (do not include the names of individuals)?
Role(s) entitled to incentive

<table>
<thead>
<tr>
<th>Monetary reward</th>
<th>Performance indicator</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Sustainability Officer (CSO)</td>
<td>Reduction of water withdrawals, Improvements in efficiency - direct operations</td>
<td>To promote sustained company success, strategic sustainability indicators are part of how we measure performance which is used to determine compensation for executives and senior leaders. Our Chief Sustainability Officer (CSO) has his goals aligned with the development and execution of our long term corporate environmental, social and governance (ESG) goals including our 2030 goals of 1) achieving a positive water impact by restoring greater than 50% water withdrawal and achieving Alliance for Water Stewardship Standard certification in high-risk watersheds where we operate and 2) reducing withdrawal by 40% per unit of production across our enterprise.</td>
</tr>
</tbody>
</table>

Non-monetary reward

No one is entitled to these incentives

W6.5

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?

- Yes, trade associations
- Yes, funding research organizations

W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?

Ecolab maintains a formal process to manage all direct and indirect engagement with policy makers and related organizations to ensure we have a common approach that is also consistent with our business strategy. This process covers the scope and business impact of specific policy issues and is integrated into the annual business continuity and risk management assessment process so that any activities that influence policy are evaluated for their alignment with Ecolab’s strategic corporate business strategy, including, but not limited to water-related aspects. If inconsistency is discovered, these are immediately flagged for action by the Government Affairs organization. One example is the extended drought in California in 2015 and the governors mandate on water reduction. The CA Water Board opted not to place any new stringent water efficiency requirements on the Commercial Industrial and Institutional (CII) sectors and leave more of the onus on residents and Ag. While Ecolab would have preferred to influence for new, more rigorous water use restrictions on our customers (CII) we
chose not to do so - even though it would have helped Ecolab’s business. We did so in the best interest of our customers.

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?

Yes (you may attach the report - this is optional)

W7. Business strategy

W7.1

(W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Are water-related issues integrated?</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>11-15</td>
<td>Following water-related issues are part of Ecolab’s long-term business planning objectives: water withdrawals, water discharge & consumption in operations, upstream & downstream; and water-related risks as affected by climate change, including future water stress. We integrate water consumption issues & risks into operational goal setting strategy & business continuity planning activities. Water-related risks & business continuity issues are addressed by the Annual Assessment of Significant Business Risks where results from annual water risk assessments are raised to the Enterprise Risk Team for consideration as a part of broader business risk assessment. This influences key decisions like future facility sites, & where to deploy capital for efficiency improvements or enhance resilience in water-stressed regions. An example is the identification, management & implementation of the AWS Standard at 2 plants in California’s Central Valley facing severe drought conditions. Our time horizon extends 11-15 years based on long-lived assets & long-term business objectives that we’ve committed to, including our 2030 customer impact goal of helping customers conserve 300 billion gallons of water annually, & our 2030 operational goals of 1) restoring >50% water withdrawal & achieving AWS Standard</td>
</tr>
<tr>
<td>Strategy for achieving long-term objectives</td>
<td>Yes, water-related issues are integrated</td>
<td>11-15</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Water-related issues included in Ecolab’s strategy for long-term business objectives: water withdrawals, water discharge & consumption, upstream & downstream; & water-related risks as affected by climate change, including future water stress. Our 2030 goals include a customer impact goal of helping customers conserve 300 B gal of water annually & our operational goals 1) achieving a positive water impact by restoring >50% water withdrawal & achieving AWS Standard certification in high-risk watersheds 2) a (+) water impact goal of 40%/ unit of production. To drive progress, we continue: - Working with 16 sites to restore 50% (+) water impact in high-risk basins - Process improvements to streamline AWS implementation in high-risk watersheds, including guidance for accountability, standardized tools & detailed timelines - Improving tools to help partners develop water management best practices - Introducing new tech & services to manage water in our plants Water risk assessments identify vulnerable sites & have resulted in mitigation & adaptation strategies at several manufacturing sites. At our largest water-using plant in Clearing, IL we adopted a mitigation strategy to reduce withdrawal from Lake Michigan. Using tools like our Smart Water Navigator, we decided to invest in water reclaim systems that will reduce water use 30%. Our time horizon extends 11-15 years. This view helps ensure our production/ business continuity & evaluate water risks beyond a 10 year timeframe.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Financial planning</th>
<th>Yes, water-related issues are integrated</th>
<th>11-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-related issues included in financial planning activities: water withdrawals, discharge & consumption in operations, upstream & downstream; & water-related risks affected by climate change, including future water stress. We integrate water consumption & water-related risks into financial planning activities through annual capital & operational expenditure planning cycle, & in our Create & Maintain Value program which deploys</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
capital to our most material manufacturing plants to increase efficiency. Water-related risks & business continuity issues are addressed by Annual Assessment of Significant Business Risks where water risk assessment results are raised to the Enterprise Risk Team for consideration in financial planning, such as future plant sites, & increasing or adjusting insurance policies for sites with known or predicted water risks. An example is the identification, management & implementation of AWS Standard at 2 plants in California’s Central Valley facing severe drought. Our time horizon extends 11-15 years based on long-lived assets & long-term business objectives we’ve committed to, including our 2030 goals of conserving 300 B gal of water annually in customers’ operations, and operational goals 1) restoring >50% water withdrawal & achieving AWS certification in high-risk watersheds, 2) reducing withdrawal 40% /unit of production. The extended view ensures we have sufficient financial resources for managing risks that may emerge beyond a 10 year timeframe.

W7.2

(W7.2) What is the trend in your organization’s water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

Row 1

<table>
<thead>
<tr>
<th>Water-related CAPEX (+/- % change)</th>
<th>-33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticipated forward trend for CAPEX (+/- % change)</td>
<td>10</td>
</tr>
<tr>
<td>Water-related OPEX (+/- % change)</td>
<td>-0.5</td>
</tr>
<tr>
<td>Anticipated forward trend for OPEX (+/- % change)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Please explain

water-related CAPEX investments decreased in 2020. Impacts of COVID-19 (global sales down 6.1% from 2019 -2020) reduced capital expenditure 33%. We estimated % change in water-related CAPEX using total expenditure decrease. 2020 CAPEX reflects commitments to reduce withdrawals at largest plants. We assess the potential of water
recycling projects at sites with high water use &/or in water stressed regions. We anticipate increased water-related CAPEX in 2021.

We had decreased OPEX in 2020. We maintained significant R&D investments for water-related products & services & realized decreased spend on water withdrawals. Total water withdrawals decreased 12.1% from 7,457 ML (2019) to 6,558 ML (2020). This was anticipated by efforts to improve water efficiency & expand use of recycled water, aligned with 2020 & 2030 water intensity targets. Our rate of investment in OPEX projects was reduced due to COVID-19. We anticipate increased OPEX investment in 2021.

W7.3

(W7.3) Does your organization use climate-related scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

W7.3a

(W7.3a) Has your organization identified any water-related outcomes from your climate-related scenario analysis?

Yes

W7.3b

(W7.3b) What water-related outcomes were identified from the use of climate-related scenario analysis, and what was your organization's response?

<table>
<thead>
<tr>
<th>Climate-related scenarios and models applied</th>
<th>Description of possible water-related outcomes</th>
<th>Company response to possible water-related outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other, please specify RCP 8.5</td>
<td>As a specialty chemicals company, Ecolab faces less exposure to climate-related risks than raw material chemical industry peers. We have significant climate related opportunities due to our products and services which deliver energy and water savings. However, we believe climate impacts on water availability and pricing present a material risk. We conduct a scenario analysis annually to evaluate if facilities operate in water stressed areas. The assessment analyses conditions under</td>
<td>The annual water risk assessment results help us prioritize where to focus our water conservation and efficiency efforts across the business. The timescale of our response is short-term (0-5 years), and we have already invested in risk mitigation water projects at many of our sites identified as at-risk. For example, both sites that exceeded criteria thresholds in our latest water risk assessment are working hard to mitigate this risk and are in scope of our 2030 Impact Goal</td>
</tr>
</tbody>
</table>
multiple climate scenarios to determine our resilience to potential changes, modeling changes in water demand, supply, stress, and seasonal variability for three periods, two climate scenarios (RCP4.5 & RCP8.5) and two shared socioeconomic pathways incorporated into the WRI Aqueduct tool. Our overall assessment focuses on a 2030 “business as usual” scenario (SSP2 RCP8.5) reflecting a world with stable development and rising CO2 emissions.

In 2020 18% of Ecolab withdrawal was sourced from areas with “high” or “extremely high” baseline water stress (Aqueduct). Further evaluating current and future risk, we assessed high BWS sites against:

1. Production intensity (site production/total) >1%
2. 10-year potential Revenue at Risk >10% (based on Smart Water Navigator tool)
3. Future BWS remains the same or increases according to IPCC RCP 8.5.

Using this criteria, only two sites (5% production, 2% withdrawal) were identified as operating in basins where production may be affected by water risk.

to restore greater than 50% of water withdrawal and obtain AWS certification within high-risk watersheds. One of the sites, our City of Industry plant in California, obtained AWS certification in 2017.

Previous risk assessments factored into our decisions to obtain Alliance for Water Stewardship certification at our manufacturing facility in Carson, California, and to invest in a water reclamation system at our Clearing, Illinois site.

We believe our risk threshold overall remains low and below our defined substantive risk threshold, and is diversified across our global portfolio of production facilities. Ecolab is continuing to evaluate and will include other physical and transition risks and opportunities into its annual scenario analysis and enterprise risk evaluation processes in the future.

W7.4

(W7.4) Does your company use an internal price on water?

Row 1

<table>
<thead>
<tr>
<th>Does your company use an internal price on water?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

Please explain

We apply the outputs from the Smart Water Navigator tool to assess the true cost of water to sites that identified as having high current baseline water stress, and use the risk premium and potential revenue-at-risk metrics to support the business case for investing in water saving projects. For example, we utilized the Smart Water Navigator when evaluating the business case for a water reclamation project at our Clearing,
Illinois site. The analysis supported the case for investment in a seal pot recirculation system which became operational in 2020. As more businesses and other water users begin to operationalize a risk-adjusted cost of water, they are more equipped to reduce their water use, especially in water-scarce areas where it's needed most. This, in turn, helps the communities in which tool users operate by reducing demand for a scarce and critical resource. Our shared goal is to drive more businesses to use data to inform actionable plans to save, reduce and recycle water.

W8. Targets

W8.1

(W8.1) Describe your approach to setting and monitoring water-related targets and/or goals.

<table>
<thead>
<tr>
<th>Levels for targets and/or goals</th>
<th>Monitoring at corporate level</th>
<th>Approach to setting and monitoring targets and/or goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Company-wide targets and goals</td>
<td>Targets are monitored at the corporate level Goals are monitored at the corporate level</td>
<td>Ecolab’s approach to target setting and goal setting incorporates the following aspects: 1) evaluating prior impact and performance; 2) evaluating benchmarks and industry best practices; 3) engaging with key internal stakeholders for input into understanding key risks and opportunities, as well as the recommended scope, ambition, timeframe and feasibility of targets and goals; 4) engaging with key external stakeholders to validate potential scope, ambition, and timeframe of targets and goals; 5) working with subject matter experts and functional and business leads to determine strategy/tactics for achieving targets and goals; 6) developing the business case for environmental and financial metrics and determining investments required to achieve targets and goals; and 7) validating proposed goals and targets to Ecolab’s Sustainability Executive Advisory Team (SEAT) which is made up of 10 members of the company’s executive leadership team and governs our sustainability strategy. The SEAT meets with the Corporate Sustainability Team on a quarterly basis and is responsible for operationalizing sustainability across the company including evaluating goals and targets and monitoring performance. Corporate-wide targets are then submitted for consideration and</td>
</tr>
</tbody>
</table>
approval by the Safety, Health and Environment (SHE) Committee of the Board which has the highest level of direct responsibility for all sustainability matters, including water-related issues, and the setting of targets and goals. The SHE Committee of the Board approved Ecolab’s current goals to reduce water impact per million dollar sales by 25% by 2020, conserve 300 billion gallons of water annually by reducing water consumption within our own and our customer’s operations by 2030, restore greater than 50% water withdrawal and achieve Alliance for Water Stewardship Standard certification in high-risk watersheds where we operate by 2030, and reduce withdrawal by 40% per unit of production across our enterprise by 2030.

W8.1a

(W8.1a) Provide details of your water targets that are monitored at the corporate level, and the progress made.

<table>
<thead>
<tr>
<th>Target reference number</th>
<th>Target 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category of target</td>
<td>Water withdrawals</td>
</tr>
<tr>
<td>Level</td>
<td>Company-wide</td>
</tr>
<tr>
<td>Primary motivation</td>
<td>Water stewardship</td>
</tr>
<tr>
<td>Description of target</td>
<td>Reduce water impact intensity by 25% by 2020 from a 2015 baseline by reducing our total water withdrawals per million-dollar sales and investing in nature-based solutions</td>
</tr>
<tr>
<td>Quantitative metric</td>
<td>Other, please specify</td>
</tr>
<tr>
<td></td>
<td>Water impact intensity (Cubic Meter Water withdrawals – Cubic Meter Water Replenishment)/ million-dollar sales</td>
</tr>
<tr>
<td>Baseline year</td>
<td>2015</td>
</tr>
<tr>
<td>Start year</td>
<td>2016</td>
</tr>
<tr>
<td>Target year</td>
<td></td>
</tr>
</tbody>
</table>
2020

% of target achieved
100

Please explain
We aimed to achieve a 25% reduction in water impact by 2020 as compared to a 2015 baseline by reducing our total water withdrawals per million-dollar sales and investing in nature-based solutions. The primary driver of progress was investment in operational efficiency projects. Additionally, we have scaled investment in nature-based solutions that replenish water in basins in which we operate. In 2020, we implemented 447,300 cubic meters of water replenishment projects and ultimately reduced our total water impact by 28.5% overall from our 2015 baseline, surpassing our goal. Ecolab’s water fund projects were focused in water-stressed operational basins and supported by our non-governmental organization environmental partner, The Nature Conservancy (TNC). We also engaged Limnotech to verify the volumetric water benefit claims at the completion of each project. Net revenue is adjusted to constant 2015 dollars to factor out inflation when normalizing progress against the baseline year.

<table>
<thead>
<tr>
<th>Target reference number</th>
<th>Target 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category of target</td>
<td>Water withdrawals</td>
</tr>
<tr>
<td>Level</td>
<td>Company-wide</td>
</tr>
<tr>
<td>Primary motivation</td>
<td>Water stewardship</td>
</tr>
<tr>
<td>Description of target</td>
<td>Reduce water withdrawal by 40% per unit production across our enterprise by 2030 from a 2018 baseline</td>
</tr>
<tr>
<td>Quantitative metric</td>
<td>% reduction per unit of production</td>
</tr>
<tr>
<td>Baseline year</td>
<td>2018</td>
</tr>
<tr>
<td>Start year</td>
<td>2020</td>
</tr>
<tr>
<td>Target year</td>
<td>2030</td>
</tr>
<tr>
<td>% of target achieved</td>
<td>30</td>
</tr>
</tbody>
</table>
Please explain
Within our own operations we aim to reduce water withdrawal by 40% per unit production across our enterprise by 2030 relative to a 2018 baseline, demonstrating a strong commitment to water stewardship within our own operations in addition to the water savings we deliver for our customers. We are ahead of schedule on this target, having already achieved a 12% reduction in withdrawal per unit production. To drive progress towards this goal we will continue introducing our newest technologies and services to help manage water in our plants. We have established site-level annual goals to give sites attainable checkpoints.

Target reference number
Target 3

Category of target
Product use-phase

Level
Company-wide

Primary motivation
Sales of new products/services

Description of target
By 2030, Ecolab aims to help its customers conserve 300 billion gallons of water per year.

Quantitative metric
Other, please specify
Absolute reduction in customer water withdrawals as a result of using our products and services

Baseline year
2015

Start year
2016

Target year
2030

% of target achieved
69

Please explain
Alongside our 2020 sustainability goals introduced in 2015, we set a customer impact goal around water to measure the impact we deliver to our customers, because water is vital to our customers’ operations (indirect). In 2020, we helped our customers to save 206 billion gallons of water. This is tracking ahead of our planned goal trajectory to achieve 300 billion gallons saved annually by 2030. Every year, we measure our
progress against this goal using the eROI Customer Impact Counter, which included all the technologies that track savings delivered to customers with established and 3rd party audited methodologies. In addition to tracking how much water we save our customers, we also track energy, air and waste savings in the eROI counter.

W8.1b

(W8.1b) Provide details of your water goal(s) that are monitored at the corporate level and the progress made.

Goal
Providing access to safely managed Water, Sanitation and Hygiene (WASH) in workplace

Level
Company-wide

Motivation
Commitment to the UN Sustainable Development Goals

Description of goal
Ecolab joined the U.N. Global Compact in 2012 and Ecolab’s Chairman and CEO also endorsed the CEO Water Mandate. Ecolab is committed to upholding the principles of water stewardship within our own operations, in alignment with the Alliance for Water Stewardship Standard, which includes providing safe water, sanitation, and hygiene (WASH) for all. Accordingly, we have set a company-wide goal to provide access to WASH facilities in 100% of our operations, and work to improve access to WASH facilities in local communities because water is vital to our direct and indirect operations. Ecolab implements the elements of its WASH program across the company-wide level through its Safety, Health, & Environment team. This goal is relevant to achieving water security as access to WASH includes safe water, adequate sanitation and hygiene education and is a key public health issue that is the focus of UN SDG Goal #6: “Ensure availability and sustainable management of water and sanitation for all.” This goal is also important to our company as it aligns with Ecolab’s efforts to advance sustainable water solutions around the world through partnerships with our customers, nongovernmental organizations, suppliers and other stakeholders to help ensure sustainable water management.

Baseline year
2012

Start year
2013

End year
2030

Progress
This is an ongoing goal and forms part of our strategy around water stewardship (i.e. the end date planned is aligned with our customer impact goal out to 2030). Indicators used to assess progress include the percent of operations and sites which have audited WASH facilities in place; with our threshold being 100%, and an achievement of 100% for all locations. As of 2020, Ecolab complies with all legal requirements for WASH services where it is required at a country level.

Goal
Other, please specify
Partnering with an NGO to develop and pilot an international standard for water stewardship

Level
Site/facility

Motivation
Commitment to the UN Sustainable Development Goals

Description of goal
We joined forces with the WWF and Alliance for Water Stewardship (AWS) and set a goal to assist with the development of the AWS International Water Stewardship Standard. As part of the AWS Standard, organizations must adopt water management best practices at the site level and engage with relevant stakeholders in their water catchment. This is relevant to the goal of achieving water security as the purpose of the AWS Standard is to provide a common, credible, globally-applicable framework for major water users to understand their impacts, and work collaboratively with others for sustainable water management within the wider water catchment context. This is a strategic goal for us as freshwater is vital to our direct and indirect operations and recycled water is important to our direct and indirect operations.

We supported the development and piloting of the AWS standard at Ecolab facilities to demonstrate water stewardship leadership and enable transparent reporting of best practices. As a leading adopter of the Standard, we continue to partner with AWS to provide training to other local water users as part of our commitment to UN SDG Goal #6, and support adoption of the Standard within our industry. We collaborate with other companies in the same watershed to implement the Standard within their facilities and identify ways to further reduce our collective impacts. We have committed to adopt the standard at all Ecolab manufacturing sites within high-risk watersheds by 2030.

Baseline year
2014

Start year
2013

End year
2030
Progress

In 2015, Ecolab’s Taicang manufacturing plant was the first site globally to receive AWS Standard certification. In 2017, we achieved our second and third certifications for manufacturing facilities in City of Industry and Carson, both located in water-stressed California. In 2019 we achieved our fourth certification at our manufacturing facility in Garyville, Louisiana. This is the first North American site certified to version 2.0 of the standard. Indicators used to assess progress against our goal include: 1) completion of development and pilot testing of the AWS Standard, 2) the number of AWS certified plants Ecolab has in operation, and 3) associated water savings. Through the AWS certification process and Ecolab’s own water saving technologies implemented as part of the certification process, these plants save a combined total of more than 40 million gallons of water annually. Our thresholds for success are to continue program expansion to new sites and maintain certification at all sites currently certified. As of 2020, we have maintained our 4 sites being certified and committed to adopt the standard at all Ecolab manufacturing sites within high-risk watersheds by 2030. We are developing a process improvement project to streamline AWS implementation at sites in high-risk watersheds, which will include corporate guidance to drive site-level accountability, standardized tools and a detailed timeline.

W9. Verification

W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?

Yes

W9.1a

(W9.1a) Which data points within your CDP disclosure have been verified, and which standards were used?

<table>
<thead>
<tr>
<th>Disclosure module</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 Current state</td>
<td>Annual total water withdrawal and replenishment data</td>
<td>ISAE 3000</td>
<td>APEX Companies LLC (Apex) was engaged to conduct an independent verification of total water withdrawal reported by Ecolab Inc. (Ecolab) in calendar year 2020. The verification was carried out to provide a limited level of assurance using a materiality threshold of ±5%.</td>
</tr>
</tbody>
</table>
W10. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.

NA

W10.1

(W10.1) Provide details for the person that has signed off (approved) your CDP water response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Vice President and Chief Sustainability Officer</td>
<td>Chief Sustainability Officer (CSO)</td>
</tr>
</tbody>
</table>

W10.2

(W10.2) Please indicate whether your organization agrees for CDP to transfer your publicly disclosed data on your impact and risk response strategies to the CEO Water Mandate’s Water Action Hub [applies only to W2.1a (response to impacts), W4.2 and W4.2a (response to risks)].

Yes

SW. Supply chain module

SW0.1

(SW0.1) What is your organization's annual revenue for the reporting period?

<table>
<thead>
<tr>
<th>Annual revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,790,200,000</td>
</tr>
</tbody>
</table>

SW0.2

(SW0.2) Do you have an ISIN for your organization that you are willing to share with CDP?

No

SW1.1

(SW1.1) Could any of your facilities reported in W5.1 have an impact on a requesting CDP supply chain member?

No facilities were reported in W5.1
SW1.2

(SW1.2) Are you able to provide geolocation data for your facilities?

<table>
<thead>
<tr>
<th>Are you able to provide geolocation data for your facilities?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, this is confidential data</td>
<td></td>
</tr>
</tbody>
</table>

SW2.1

(SW2.1) Please propose any mutually beneficial water-related projects you could collaborate on with specific CDP supply chain members.

SW2.2

(SW2.2) Have any water projects been implemented due to CDP supply chain member engagement?

No

SW3.1

(SW3.1) Provide any available water intensity values for your organization’s products or services.

Product name
All products manufactured at our Barueri facility

Water intensity value
0.0012

Numerator: Water aspect
Water withdrawn

Denominator
Volume of products produced (kg)

Comment
We calculate the water intensity of our customer’s purchased products at each facility using the following equation:
Water Intensity of Purchased Products at Facility = Annual Facility Water Use (m3) / Annual Volume of Products Produced at Facility (kg)

Product name
All products manufactured at our Cutatitlan facility
Water intensity value
0.0004

Numerator: Water aspect
Water withdrawn

Denominator
Volume of products produced (kg)

Comment
We calculate the water intensity of our customer’s purchased products at each facility using the following equation:
Water Intensity of Purchased Products at Facility = Annual Facility Water Use (m3) / Annual Volume of Products Produced at Facility (kg)

--

Product name
All products manufactured at our Pilar facility

Water intensity value
0.0007

Numerator: Water aspect
Water withdrawn

Denominator
Volume of products produced (kg)

Comment
We calculate the water intensity of our customer’s purchased products at each facility using the following equation:
Water Intensity of Purchased Products at Facility = Annual Facility Water Use (m3) / Annual Volume of Products Produced at Facility (kg)

--

Product name
All products manufactured at our Greensboro facility

Water intensity value
0.001

Numerator: Water aspect
Water withdrawn

Denominator
Volume of products produced (kg)

Comment
We calculate the water intensity of our customer’s purchased products at each facility using the following equation:
Water Intensity of Purchased Products at Facility = Annual Facility Water Use (m3) / Annual Volume of Products Produced at Facility (kg)

Product name
All products manufactured at our Lerma facility.

Water intensity value
0.0007

Numerator: Water aspect
Water withdrawn

Denominator
Volume of products produced (kg)

Comment
We calculate the water intensity of our customer’s purchased products at each facility using the following equation:
Water Intensity of Purchased Products at Facility = Annual Facility Water Use (m3) / Annual Volume of Products Produced at Facility (kg)

Product name
All products manufactured at our Suzano

Water intensity value
0.0019

Numerator: Water aspect
Water withdrawn

Denominator
Volume of products produced (kg)

Comment
We calculate the water intensity of our customer’s purchased products at each facility using the following equation:
Water Intensity of Purchased Products at Facility = Annual Facility Water Use (m3) / Annual Volume of Products Produced at Facility (kg)

Product name
All of our products manufactured at our Garland facility

Water intensity value
0.0016

Numerator: Water aspect
Water withdrawn

Denominator
Volume of products produced (kg)

Comment
We calculate the water intensity of our customer’s purchased products at each facility using the following equation:
Water Intensity of Purchased Products at Facility = Annual Facility Water Use (m3) / Annual Volume of Products Produced at Facility (kg)

<table>
<thead>
<tr>
<th>Product name</th>
<th>Water intensity value</th>
<th>Numerator: Water aspect</th>
<th>Denominator</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>All of our products manufactured at our Huntington facility</td>
<td>0.0038</td>
<td>Water withdrawn</td>
<td>Volumes of product produced (kg)</td>
<td>We calculate the water intensity of our customer’s purchased products at each facility using the following equation: Water Intensity of Purchased Products at Facility = Annual Facility Water Use (m3) / Annual Volume of Products Produced at Facility (kg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product name</th>
<th>Water intensity value</th>
<th>Numerator: Water aspect</th>
<th>Denominator</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>All of our products produced at our Joliet facility</td>
<td>0.0019</td>
<td>Water withdrawn</td>
<td>Volumes of product produced (kg)</td>
<td>We calculate the water intensity of our customer’s purchased products at each facility using the following equation: Water Intensity of Purchased Products at Facility = Annual Facility Water Use (m3) / Annual Volume of Products Produced at Facility (kg)</td>
</tr>
</tbody>
</table>
Product name
All products manufactured at our Martinsburg facility

Water intensity value
0.0008

Numerator: Water aspect
Water withdrawn

Denominator
Volumes of product produced (kg)

Comment
We calculate the water intensity of our customer's purchased products at each facility using the following equation:
Water Intensity of Purchased Products at Facility = Annual Facility Water Use (m3) / Annual Volume of Products Produced at Facility (kg)

Product name
All products manufactured at our McDonough facility

Water intensity value
0.0007

Numerator: Water aspect
Water withdrawn

Denominator
Volumes of product produced (kg)

Comment
We calculate the water intensity of our customer's purchased products at each facility using the following equation:
Water Intensity of Purchased Products at Facility = Annual Facility Water Use (m3) / Annual Volume of Products Produced at Facility (kg)

Product name
All products manufactured at our Mississauga facility

Water intensity value
0.0017

Numerator: Water aspect
Water withdrawn

Denominator
Volumes of product produced (kg)
Comment
We calculate the water intensity of our customer’s purchased products at each facility using the following equation:
Water Intensity of Purchased Products at Facility = Annual Facility Water Use (m3) / Annual Volume of Products Produced at Facility (kg)

Product name
All products manufactured at our Montgomery facility

Water intensity value
0.0017

Numerator: Water aspect
Water withdrawn

Denominator
Volumes of product produced (kg)

Comment
We calculate the water intensity of our customer’s purchased products at each facility using the following equation:
Water Intensity of Purchased Products at Facility = Annual Facility Water Use (m3) / Annual Volume of Products Produced at Facility (kg)

Submit your response

In which language are you submitting your response?
English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>I am submitting to</th>
<th>Public or Non-Public Submission</th>
<th>Are you ready to submit the additional Supply Chain questions?</th>
</tr>
</thead>
<tbody>
<tr>
<td>I am submitting my response</td>
<td>Investors Customers</td>
<td>Public</td>
</tr>
</tbody>
</table>

Please confirm below
I have read and accept the applicable Terms